uDC 532, 72
ON NECESSARY OPTIMALITY CONDITIONS IN PROBLEMS OF
CONTROLLING TRANSPORT PROCESSES

PMM Vol, 38, N2, 1974, pp,250-300
Iu, A, KUZNETSOV and §,F, MOROZOV
(Gorkii)

(Received November 16, 1972)

A method given in [1] is used to establish the necessary conditions of optimality
(in the form of the minimum principle) for a controlled unsteady process of tran-
sport of particles described by a general integro-differential kinetic equation,
The control functions enter the initial conditions of the process, appearing in the
inhomogeneous term of the equation (source), or in the absorption coefficient,

The problems of controlling the systems with distributed parameters connected
with integro-differential equations are of importance from the theoretical point
of view and in the practical applications such as the theory of conirol of nuclear
reactors [ 3],

1, Let us consider a controlled process of transport of particles, connected with the
mixed problem for an unsteady integro-differential transport equation
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Here ( is a convex region in E; {z,, #3, Z3} bounded by a smooth surface §, n =
n (X) is the outward normal at the point X &= S, V is a bounded region belonging to
L5 {ty, vy, Ua) and uw (X, v), (X, v) & G X V is a control vector function bounded
and measurable in the given region, and assuming the values from Q (T F,, (we call
such controls admissible).,

In the following the operator @ / @t -+ (v, \/.) will be denoted by 8 / 8 which is
a derivative taken along the characteristic of this operator,

Let us pose the following optimal problem for (1,1): to find amongst the admissible
controls u (X, v) satisfying the restriction

L)y == \ LX, v, t, (X, 0), Y (X, v, 1))dD <0 (1.2)
b
D=GxVx{0, T}, dD = dX dvdt
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a control u (X, v) which minimizes the functional

') = §§ (X, v, v (X, v), $u(X, v, T))dX do (1.3)
GV
where T denotes a fixed instant,
We shall assume that the functions

g{X, u, t), g(X, v, u, T(X, v, 0, K; (X, w, v), K. (X, w, v)

are measurable with respect to the variables (X, v, w, 1), and g (X, v, u) is conti-
nuous in u in the corresponding domains of definition, We shall also assume that the
following conditions of boundedness and summability hold for any admissible control
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where C, — (C, are constants,
In the functionals (1,2) and (1. 3) we assume that L (X, v, ¢, u, ) and O (X, v,
z) are measurable in X. v and 7. continuous in u and twice continuously differ-
entiable with respect to o in the corresponding domains of definition and also increase
in z according to the following power relations

[L|, | D] MyzPy [ LS| [ ] Mzt (1.5)
‘I::” t’ ' ‘i’::” < B “1&”)*

where A/, ,, — 3/ ; are constants, These conditions find use in deriving the varia-
tions of the functionals,

2, Let u® (X, ¢) be the optimal control and ¢, (X. t. t) the corresponding L -
solution of (1,1), We construct an impulsive variant u® (X, ¢) of the comtrol u" (X,
v} as follows, We take a finite set of pairwise different points (X;. ;) == G (V.
For each set of nonnegative numbers y** such £, > 0 can be found that for 0 < & -
e, ,the rectangles

M =T (X, ) = |(\ pp— 2 vl &gy

k-1

e Z i, r—ek Juy Ty —e(h—1), s =2, 3

el < v — ek — ). o= 1,2, 3} (105 | = ety

do not intersect pairwise, Let u - {u;.} be a finite set of vectors belonging to 2.
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The variant u* (X, v) with the parameters {(X;, v;))}, u = {u;} and y = {y**}
is determined as follows:
uy, (X, )= 1T°

WXV = 00Xy, (X, DEGXVN U Ty

We note that the mixed problem (1, 1) with the conditions (1,4) is stable under the
pertwrbation of control, (Similar variants can also be constructed for the cases when
the control enters g (X, v, t)and ¥ (X, v, t)). We shall formulate this in the fol-
lowing theorem.

Theorem , For any variant u® (X, v) there exists a positive number &* < &y
such that each control ut (X, v), 0 < & < &* has, under the condition (1,4), a cor~
responding L, - solution ¢ (X, v, ?) of the problem (1,1), unique in D,

The following inequality

(X, 00— %o (X, 0 Dl +| o — ]
Lp(l))

C”g(X» v, ug(‘\’ Z’)) - g(X1 v, u? (‘Xv L’))”LP(GXV)

-~

holds for this solution from which it follows that for £ — 0

)Lis Lo '
Te (X, v, 1) — G (X, v, D) iy + l m%—ﬂr,pm)ﬂ v

The above theorem follows from the theorems estabhshed in [4],

3, To find the first variations of 0 and L we must construct integral represent
ations for the increments AL = L (u®) — L (u%) and A® = @ (ut) — @ (u?).
Consider the increment A L ,

= {{ 5 0 (X, v 0 — o (X, v, 514D}

VL X v, 1 us (X, 0), %0 (X, 0, 0) — L(X, 0, £, u%X, 0), 9o (X, 0, o)}dp=

I

{AEIL} “}'S AuL (X, v, tv usy u07 ‘Pn) dD
D

g:(X, U, tv uE(Xv U)a'\Po(X, Ua t)+ﬁ(‘l}e“‘%))’ 8>/O’ O<e<1

We denote by A+ a linear integro~differential operator of the form

A= S 2w, 0% = (103 (X v, 0 K (X, v, )
\'2
(X, v, v (X, oY Ky (X, v, vy v (X, v, ) do'

Let us introduce a linear normed space L 4 (D) connected with A , consisting of the
functions ¢ (X, v, t) & L, (D) with a generalized derivative /3! & L,, (D),
possessing a bounded norm of the form

1o (X, 0, 4 =1 (X, 0, Oty +]

and such that

aw(x 2, ) ”

Lp( m
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(X, v, ) o= (X, V), V{z,v. 0 =0, X=8 (wn O
By the Theorem the equation Ay = § has a unique solution in the space Lp4 (D)
for any function ¢ (X, 1) &= L, v ~ V) ,and the following estimate holds:

” 'q“ (Xv v, t) H[’PA(D) \< C

Since to each @ (X, v) &= L, (G X V) there corresponds a unique § (X, v, #)
LA (D), then an operator B, ¢ (X, v, {) == Be (X, v) exists which acts from
L, (GXV) into Ly# (D) and is bounded by virtue of (3,1), i, e.

(X, v) L xv) (3.1)

” B ”Lp(GxV)—>LpA(D) <C
Clearly, B* acts from L,4 (D)* into Ly (G X V)*. We note that
AEw = ﬂ‘s (X? v, {} — 1p() (X* v, f) & LPA {D)

and we can write

A (Ai'lp) - 0* Ailp == B Aug

Aug = g (X, oo ut (X, v) — g (X, v. u® (X, 1)) (3.2)
Next we shall use the following integral formula:
al. (ng)
o) =\ == v (X, v ndD
D

to obtain for each € >> U a linear bounded functional 7, =: 7. ({" on the functions
Y (X, v, t) &= LyA(D) . The functional obviously satisnes the conaition

Ts (As‘b) = A!IL {3. 3)

Each functional T, & > U is an element of the space LA (D) *, and as such, is
transformed by the operator B* into a certain element of the space L, (G X V) *.
By (3.2),(3. 3) and the Riesz theorem on representation of a linear functional according
towhichtoeach functional (e on Ly (G X V) there corresponds a unique function Xe
betongingto L, (G > V), 1/p + 1 /g =1 sothat

Q. (z) = S xe (X, )2 (X, 0)dX dv, (X, )L, (GxV)

GV
AglL = Ts (AE‘P) == (tu Ae‘p) — (Tsa BAug) =
(B*e, Aug) = 0u(dug) = | %e(X, Aug (X, v, ut, u®)dX dv

GXV
From this we obtain the integral expression for A.L in the form

we have

AL =- S e (X, O A (X, o, us, 09 dX dv + (3.4)
Sy
(

A (X, 2) = Brr T () == (V.. §)

In the similar manner we find the increment A,D ,
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AD = S ve (X, ) Aug (X, v, us, u®dX dv (3.5)
GXV
AD (X, v, ut, ul, $o)dX dv
GxV

Ve (‘Yv ?) == B*Tps' Rg (\p) = (pg? ‘l’)

4, The integral representations (3, 4) and (3, 5) make it possible to derive the first
variations of the functionals L and @ on any impulsive variant u® (X, v) defined by
the corresponding sets
(X5 v gy (¥, 1<iKN, ASESY .1

First, we find the variation 8L,

6L—hm~—-AL~hm 2 7”‘{ - S Xe (X, V)
B 1N Inik | e
IShsM ;X 0))
Aug (X, v, us, udX dv +
T
1 »
G als —
e S AL(X, v, t, ut, u®, ) dp} —

Httxgp

lgé\ y lim Ay (X5, v) + s (X, v, T

1EKM €0
It can be shown that the following limiting passages can be realized almost everywhere

G X V: m Ayt (X, v) = 40 (X, v) = % (X, v) Aug (X, v, uy, 1)
=g
T
limpy (X, 0, T) = pa® (X, 2, T) = S AuL (X, v, 6, uy, 0, $o)dt (4.2)
-0 0
Thus for any pair of numbers N and M and any set

w=f{ugh 1 <i<N A<kE<M

there exists a set Lo, ENY = G X V with a full measure in G X V', and a se=
quence B?N M, }, s = oo such that the limiting passages (4, 2) can be realized on
any set {(X;, 1y)} belonging to EY™, Therefore, if some variant u* (X, v) has (4,1)

and {(X;, v;)} — ENM as the defining sets, then the variation 8L on this variant has

the form 2
oL = TN Ym {X‘J (Xm Lz) Aug (Xn Uy gy u (Xv vt)) %
1<h{M
T
S AL (X5, vy £, iy w2 (X5, 03), W (X3, 0, 1)) dt}
4

Carrying out the usual argumentation we can derive the variation on a wider class of
variants defined by the following finite sets:

{(Xe v} w={ug), v = {1} up=Q, v% >0 (4.3)

with (X', ©;) = £ (Q; is a denumerable vector net dense everywhere in (3 ) where
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we obtain the variation in the form

oL — 2 T {X“ (X5, 0) Aug (N, v, ty, u® (X, 1y)) -1 (4.4)
i,k

.

SA,LL (X5, o5 b, iy w2 (X5 0), b (X, 03 1) dt}

0
Similarly, for the functional (O (u) we can introduce a set Eq C”G » V, mesEqg =
mes (G X V) such that on an arbitrary variant u® (X, v) defined by the finite sets
(4.3) with (X;, v;) C Eg, the first variation 8® has the form

P = Z Y (v (X5, ) Aug (X, vy, wyg, u® (X, 1y)) + (4.5)
ik

A D (Xia Vi, Uy, U° (X5 ), Vo (X5 v, 1))}

5, Using the formulas (4,4) and (4, 5) we now obtain the necessary conditions of
optimality in the form of a minimum principle, To each set of parameters (4, 3) with
(X;.v;) & E = EL (| Eg there corresponds, in accordance with (4,4) and (4, 5), a
definite pair of variations 0L and 8¢ which can be considered as a vector belonging
to the space F,. The whole collection of such sets has a corresponding set K of vec-
tors {8L, dM}. Investigation of the structure of the set K (C E, shows that K isa
convex cone in E, with its apex at the coordinate origin and, that the cone does not
intersect the open negative quadrant # == {x,, ,; x; < 0, 2, < 0}. From this it
follows that the convex nonintersecting cones X and R , diverge in E, on a certain
straight line defined by the vector of the normal p = {u,, p,} = E, directed to-
wards the cone K, and the scalar product of p and any vector belonging to K is non-

negative wdL + pgdd > 0 (5.1)

The above relation together with (4, 4) and (4, 5) makes it possible to obtain the neces=-
sary conditions of optimality in the form of a minimum principle. To do this, we must
construct a specific set of parameters

(le Ul)v {ull}a {Yu = 1}
u, =9, (X,. vy =EE ECGxV

Evaluating the corresponding set of variations and using (5, 1), we obtain the necessary
condition of optimality in the form of the following minimum principle ,

The minimum principle. If u° (X, v) isthe optimal control and V", (X,
v, t) the corresponding L ,-solution of the problem (1,1), then there exist functions
%o (X, v) and v, (X, v) belongingto L, (G X V) and defined uniquely by the ope-
rator relations

%o (Xo 1) = B*t, vo (X, v) = Br¥po (5.2)
and nonnegative numbers U;, Mo (W,2 + pe? 7= 0) such that the relation
AX, v, t,u (X, v) = (5.3)

T

™ {XO(X, vy g (X, v, u®) +§ L (X, v, 8,00, W0 (X, 0, 1) dt} 4

0
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!"’2 {Vo (X’ U)g(X, v, u()) + (D(Xa v, u()’ \FO (Xr v, T))} =
inf A(X,v,t,u(X,t)

=9

holds almost everywhere in G X V,

We note that the functions Vo (X, v) and ¥, (X, v) defined in (5, 2) represent the
solutions of certain conjugate problems, Let ¢; (X. v, t) be a solution of the follow=
ing mixed problem: 5

A*Qpy = — =7 1 X,o2, )~ (v, VI (X, v, ) - (5.4)

[v]|Z(X, v, )¢y —Slv]{?..f(X, v, Yyvi (X, v) K; (X, v, V') +
).

(X, v, ) Ko (X, v, 0} o (X, 0, ) dv’ = 220

P (X’ v, t) t!:T—O =0
o (X, v, O]xes =0, (n(X)-v) >0
Then we can easily see that ¥, (X, L’) = @y (X: v, 0)-
Similarly, if @, (X, v, ?) is a solution of the mixed problem

A4y (X, v, 1) =0, (X, v, 1) mrmg = 2]

oz (5.5)
P2 (Xﬂ v, t)XES = 05 (n’ (X)'U) >0
vo (X, v) = ¢ (X, v, 0)

Furthermore we note that X, (X, ¢) and v, (X, v) can also be written in the form

then

1o (X, 0) = | 22 C T D 6,0, X, v]1, Y, w)dD

D

vo (X, v) = 5 K@D G0, X, 0| T, Y, w)dY dw
GXV

Here G, (s, Y, w |t, X, v) is the Green's function of the mixed problem which cor-
responds to the optimal control #° (X, v) and defined as follows:

AGy(s, Y, w|t, X, v) =0 (in the variables ¢, X, v)
A*Gy (s, Y, wit, X, v) = 0 (inthe variables s, Y, v)

where Go(s, Y, w|t, X, v) -8 (Y — X) 8 (w — v) when (£t — ) | O (itis
assumed that ¥, (X, v, #), £, (X, v, §) and Z (X, v, t) all vanish identically out~
side ).

6, We deal in the same manner with the problem of controlling a transport process
in the case when the control vector function u {X, v, ¢) enters the coefficient of ab-
sorption ¥ (X, v, £, u) and the source ¢ {X, v, £, u). but is not contained in the
boundary condition of the problem (1,1) (problem -1).

Let us pose for the problem A the following optimal problem: to find among the
admissible controls u (X, v, t) (ie. u (X, v, t), (X, v, t) e D is a vector control
function, measurable and bounded within the stated region and assuming the values from
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the bounded set Q (T E,), satisfying the restriction

Nw =N, 0 t,u(X, 0,0, %X, v, 0)dD <0
D
the control which minimizes the funcrional
Ty = F (X, v, t,u(X, v, 0), $u(X, v, ) dD
b
Let N(X, v, ¢, u, z) and F (X, v, t, u, z) satisfy the same conditions as L (X,
v, t, u, z){see Sect, 1), Let the conditions (1,4) also hold and let

O<jv|Z(X, v, ¢, u(X, r, )<L,
lg(X, v, t, u(X, v, D) | <B(X, v, )y & L, (D)

for any admissible control u (X, v, {), Finally,let £ and q be continuous in .
Then we have the following minimum principle,
The minimum principle, If u® (X, ¢, ¢) is the optimal control and Yy( X,

v, t) the corresponding L - solution of the problem A, then there exist functions
oy (X, v, 1) and B, (X, v, ¢) belonging to L, (D)) and defined uniquely by the
operator relations

ag (X, v, ) = (459 * 1, Bo (X, v, 1) = (A" * po
and nonnegative numbers [4; and py (i,® + p,? = 0) such that the relation

Ma X, o 8, W (X, v D) =y {og (X, v, ) g (X, v, 1, 00 —
YolXo v, ) I 2 (X, v, t, )] + F(X, v, £, ° ¥, (X, 0, 1))} +
u‘z {ﬁﬁ (X’ v, t) [g (X9 o, i’ uﬂ) "—1#0 (Xr 1 1‘) !U !E (Xv v, f, uu)i ‘i_
N(X, v ¢, u® Vo (X, v, 1))} ::;?ef AalX, v, t, u(x, v, 1)

kS

holds almost everywhere in /) , In the above expression t,and p,are functionals uni-
quely defined by the functionals I and N and by the optimal pair ¥y, u°.

Let Go{s, Y, w|t, X, v) denote the Green's function corresponding to the opti-
mal control u® (X, v, ¢). Then

T
0 (X, 8 = K R WGQ(L X,v|s, ¥, w)dD

[

feyv

T
Bo (X, 1, t) = x S WGO(t’ X, vl Y, w)dD
t GXV

We note, in addition, that oy (X, v, #) and B, (X, v. f) are solutions of the conju-
gate problems analogous to (5, 5) and (5,4),

Methods similar to those given in [5, 6] can be used to compute the Green's function,
and an analogous minimum principle can be considered for the stationary problems of
the transport theory,

7. The minimum principles obtained in Sect, 5 and 6 reduce the problem of deter-
mining optimal controls to finding the minima of the corresponding functionals and to
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solving the transport equation by approximate methods, Methods described in [7 —11]
can be used to solve the numerical problems,

As an example, we consider the following problem connected with the transport equa=-
tion 1

0 17} o

T P (5100 B b (2 ) 3, = 5 | b, G, 0 (7.1)
e §,

‘P.u(zs . 3)1{:.{_0 =gz, p)=u (s, p

YuoO,p, =0, 0>0 Pu@, 1, ) =0, u<go

Let the function ¥ (z, ) & L, {(0, @) X (— 1, 1)} be specified, We seek such an admis-
sible control u (z, w) that the generalized L, solution of the problem (7, 1) minimizes

h

the functional e
© @ = 1, ) = x(em) P ddp

—19
Using formula (5, 3) we write the necessary conditions of optimality of the control in
the form of the following minimum principle :

vo (2, V’) u? (z, py + @ (Z, B, u? (z. 1) ¥ (z, u, 7)) =
in{g{“o (:s !L} u + @ (Z, Ha i, 1p() (3’ , T))}
Uues

Thus, it is necessary to find a control u {7, ) minimizing the functional
T(u) = vy (s, W) u (2, B) + @ (u, ¥y (201, T))

Here v, (z, 1) is the solution of a certain conjugate problem analogous to (5, 5), Namely,
if @y (s, u, t) represents a generalized L,-solution of the problem

+1
ag_ (2,1, 1) 9@ (z,u, 1) ¢
- Jt - 0z +99, =3 B P, (2,07, ) dp' (7.2)

-1
Pu (s Wy Dl = 2 {Pu (o 10, T) — % (2, )}
0,0, 1, ) =0, pu<<0; @ula,p, ) =0, p >0

then
vy (s, B} == 1§y (z, w, 0

We note that in the above example the control function « (z, u) is not, generally
speaking, restricted in any way and «(u) does not depend explicitly on the control
u (3, 1t). For this reason the functional / {(«) is a linear function of the control u (z, u)
and attains a2 minimum only for v, (z. p) = 0 or in other words, @, (z, £, 0) = 0. The
latter together with (7, 2) yield the relation y, (z, u, 7y-= % (s, p). This in fact deter-
mines the optimal control «" (s, 1y , which can be any control with the property that
the corresponding solution satisfies the condition v, (z, 1t, 7) = % (z, W) at the instant
t =1,

The figures illustrate the controls corresponding to various standard values of ¥ (z, )
and the solutions of (7,1) at the instant ¢ = 7 obtained according to the controls com~
puted, and this fully agrees with the arguments presented above, Figures 1 — 3 correspond
to
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7
[ s g &l 04, p<o
Koz p) = .
l sin 03 & [0.0.1], u>q
( 1, & [0,0.08], n<<o
n
o) | cos 7 (= — 0.08) T & V.08, 0.1, p<<0
o 1, 2E1002,01],  p>0
.=
SR LTS e [0,0.02], u>0
. 1, 2 [0, 0.09], p< 0
n
€0’ m(:_o.om z e [0.09,0.1], n <0
Xa (2, 1) = ¢
1, :E[0.01,01], >0
.=
| sin g7 % : & 10, 0.01], n>0

The transport equation was solved by an apptoximate method given in [10] and the
functional was minimized using the method of coordinate descent [12],
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