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A method given in Cl] is used to establish the necessary conditions of optimality 
(in the form of the minimum principle) for a controlled unsteady process of tran- 
sport of particles described by a general integro-differential kinetic equation. 

The control functions enter the initial conditions of the process, appearing in the 
inhomogeneous term of the equation (source), or in the absorption coefficient. 

The problems of controlling the systems with distributed parameters connected 
with integro-differential equations are of importance from the theoretical point 

of view and in the practical applications such as the theory of control of nuclear 

reactors [ 31. 

Let us consider a controlled process of transport of particles, connected with the 
problem for an unsteady integro-differential transport equation 

-$W, L’, t> -I- (u, V,.) Q (S, I’, t> + 11‘1 s (X, r, I) 1; (X, U? t) = (1.1) 

s. 1 I.’ 1 I“j (S, 2”. t) 1’1 (X, 2.‘) Kj (X, l”, z?) _I- 

x:, (S. i.’ , !) Ii,: ( Y, L.‘, F); $ (X, I”, t) cfc’ j- q (S, I‘, f) 

I$ (S, I’. f) /:7Tr_* == g (X, L’, Ii (S, u)) 

II’ (S. L’. f) I:Es = 0, (L’*It (X)) < 0, t E [O, T1 

s =-= (XI, .?A . x2) E G, 
c -z (pt. I‘~. r,) E V, 1 u 1 > a= const > 0 

Here C is a convex region in E, {x1, I?, x31 bounded by a smooth surface S, n :.- 
12 (X) is the outward normal at the point x’ E #s, v is a bounded region belonging to 

I:‘:, {c,, Q, c,} and 1~ (X, P), (X, u) E G :i V is a control vector function bounded 
and measurable in the given region, and assuming the values from Q c E, (we call 
such controls admissible). 

In the following the operator a / dt -k (I:, OS) will be denoted by 8 / ifi which is 

a derivative taken along the characteristic of this operator. 
I,et us pose the following optimal problem for (1.1): to find amongst the admissible 

controls I( (X, U) satisfying the restriction 

L (I!) :r= j, I, (A-, I’, t, Ii (S, u), q& (X, u, 1)) dD \< 0 (f.2) 

L) = G x t’ x [O, 7’1, dD = dX du dt 
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a control u (X, uf which minimizes the functional 

(I) (zt) = s 5 6T) (X, Z’, U (X, c), *,, (X, I?, 17)) clx dt: 
(1 L’ 

where T denotes a fixed instant. 

We shall assume that the functions 

(1.3) 

4 (X, u, t), g (X, I’, u), s (X, L’, t), k’f (X, IO, U), &(X, U’, Q) 

are measurable with respect to the variables (X, r, W, t), and g (X, 17, u) is conti- 
nuous in IL in the corresponding domains of definition. We shall also assume that the 
following conditions of boundedness and summability hold for any admissible control 

where C, - C; are constants. 

In the functionals (1.2) and (1.3) we assume that L (X, L’, f, u, 3) and (1) (x, z’, 

If, z) are measurable in X. I’ and t. continuo~ in u and twice continuously differ- 
entiable with respect to 2 in the corresponding domains of definition and also increase 

in z according to the following power relations 

where nit . , . - Jf R are constants. These conditions find use in deriving the varia- 
tions of the functionals. 

2. Let ~1’ (X, I-) be the optimal control and qO (X, 1’. t) the corresponding L,,- 
solution of (1.1). We construct an impulsive variant UE (X, I+) of the control u” (_y, 
C) as follows. We take a finite set of pairwise different points ( ‘yi, ri) kz G ,; ii. 

For each set of nonnegative numbers y’h’ such E, > 0 can be found that for 0 ( F ..c 

F, , the rectangles i; 

(‘i,,, - Eli < Z',, .,I l’?,, - t-‘ (It - 1). II = 1 , “> 31 (I Hi, 1 _- Ffyh’) 

do not intersect pairwise. Let u {uik} be a finite set of vectors belonging to S2. 
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The variant uE (X, u) with the parameters ((Xi7 vi)}, u = {uik} and y = (y’“) 
is determined as follows : 

zc(X,u)= 
1 

uih_, (X, V)E q* 

u"(S, L)), (X, u)~Gx lViuk &' 

We note that the mixed problem (1.1) with the conditions (1.4) is stable under the 
perturbation of control. (Similar variants can also be constructed for the cases when 

the control enters 4 (X, V, t) and 2 (X, ~7, t) ). We shall formulate this in the fol- 

lowing theorem. 
Theorem. For any variant zP (X, u) there exists a positive number E* < ey 

such that each control UC (X, z;), 0 ,< E < E* has, under the condition (1.4), a cor- 
responding L,,- solution & (XI P, t) of the problem (1. I), unique in D . 

The following inequality 

holds for this solution from which it follows that for E -+ 0 

/i ((t.E (X, c, t) - q?*(X, c, t) jl,$p) i- , $- - $1, 
1/ 

The above theorem follows from the theorems established in [4]: 

(y+ 0 

3, To find the first variations of cl, and L we must construct integral represent- 
ations for the increments A,L = L (uE) - L (u”) and Aed, = 0 (us) - cf, (a*), 
Consider the increment A& , 

qr 7 (X, 72, t, ue (X, u), $0 (X, l’, t) + 6 ($t - qo)), 8 I, 0, 0 <.e < 1 

We denote by A$ a linear integro-differential operator of the form 

Al+ = $ + 1 u 1 X(X, u, t) Q - 5 [ u’ I(& (X, v’, t) K, (X, u’, u) $- 

X/(X, v’, f) Y/ (X, 27’) Kf (X, ZJ, u)} ‘II, (X, u’, l!) du’ 

Let us introduce a Iinear normed space .&” (D) connected with A , consisting ofthe 
functions I+ (X, u, t) E L, (D) with a generalized derivative w/i31 e L, (D), 
possessing a bounded norm of the form 

and such that 
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9 (X, u, 4 It=+* = cp (X, v), $ (3, L), t) = 0, x E s (0-n) < 0 
By the Theorem the equation :‘l$ -= f!l has a unique solution in the space L," (of 

for any function cp (X, I-) E I,,, ,!; ,?, V) , and the following estimate holds: 

I/ II; (XT u, f) Iil,,AcD, < c jl ‘p cx> l’) hp(CXv) (3.1) 

Since to each 9 (X, 72) E I;, (G x 1’) there corresponds a unique 9 (X, u, t) E 
L,A (D), then an operator B, I# (X, u, t) 1: Bq (X, c) exists which acts from 

L, (GxI') into L, A (L)) and is bounded by virtue of (3. l), i. e. 

iI* ~IL~~GxI+.L~A~~~ G ’ 

Clearly, B* acts from L,A (D)* into L, (G x V)*. We note that 

A,$ = *!t (;I’, Z?, t) - $() (X, v, t) & L," ID) 
and we can write 

A (A.L$) = 0. AL.+ := B A,, g 
AIIg = g (X, I’, uL (X, v)) - g (X, u. uQ (X, 2;)) 

Next we shall use the following integral formula: 

T, (6) = 1~ jJZ8) 9(X, ~1, r)dD 
n 

(3.2) 

to obtain for each F > tJ a linear bounded functional T, == TL ($‘, on the functions 

I# (X, 0, t) E L/(D) l 
The functional obviously satisnes the condition 

T, (A&) = A,'L (3.3) 

Each functional Te, E > 0 is an element of the space LpA (n) *, and as such, is 

transformed by the operator B * into a certain element of the space L,, (G X v) *. 

By (3.2). (3.3) and the Riesz theorem on representation of a linear functional according 
towhich toeach functional qE on L, (G ;< V) there corresponds a unique function XE 
belonging to L, (G i: v), i/p i- i/q== 1 sothat 

QE (2) = $ Xc (X, 2,) 2 (,‘i, I’) cm do, z (A-. r) E L, (G x I’) 

we have 
GY\. 

A,‘L = Z’.(A,q) = (T,, A&) m-= (G, BAug) = 

(f;l*zE, A,g) = Qc (A~g) = [ xc (X, Aug (X, I?, us, u*ldX clo 
C;;V 

From this we obtain the integral expression for &L in the form 

In the similar manner we find the increment A,@ , 
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A,(.3 = s Ye (X, Y) A,g (X, u, Z-P, ZP) dX &I -J- (3.5) 
GXI- 

s 
A,,(f) (X, u, ZP, u”, qo) ClX du 

cxv 
Vt (S, V) = B*,p,. R, W = (P,, $1 

4, The integral representations ($4) and (3.5) make it possible to derive the first 
variations of the functionals L and d, on any impulsive variant ~8 (X, v) defined by 
the corresponding sets 

{(Xi, Vi):, (r(ik}, {rikf, 1 <i < N, 1 <k < X (4.1) 

First, we find the variation CjL, 

Ah,g (X, u, uE, u”) dX du + 

It can be shown that the following limiting passages can be realized almost everywhere 

inG x V: 

lim pikE (X, L’, T) = l.tiko (X, 
E-NJ 

v, I’) = 5‘A,L (X, u, t, uih-, uo, qO) dt (4.2) 
0 

Thus for any pair of numbers PI” and fir and any set 

LL = {Ui~), 1 \< i Q N. 1 ~ k ~ ‘~ 

there exists a set Efi”, EC”’ - 
quence ryN “’ 

C_ G i( ii with a full measure in G x V, and a se- 
-+ 3, s -+ oc such that the limiting passages (4.2) can be realized on 

any set {(Xi, q :i belonging to Et". Therefore, if some variant z.? (X, u) has (4.1) 
and ((Xi, vi)) c &,hiA1 as the defining sets, then the variation && on this variant has 
the form 

6L = rei,qv Y”k 
z2 1 ,;;l&tf 

‘&(&, s) A,g(&, v,, ui$, @(xi, vi)) --t 

T 

Carrying out the usual argumentation we can derive the variation on a wider class of 
variants defined by the following finite sets: 

{(Xi> l-i) >* LI =z {tlik)r y 1=: (79, U;h_E $21, 7ic > 0 (4.3) 

with (.y,, 2~~) e EL (9, is a denumerable vector net dense everywhere in $2 ) where 
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we obtain the variation in the form 

8L _ z: rik ix,, (Xi, Ui) A,g (Si, I’j, Uik, U” (X,, L’i)) ~(_ (4.4) 
i. I; 

I 

s Ad (Xi, 
0 

I’j~ t, Ilih_, zco (Xj, Ui), ~0 (Xi, Z’i, t)) dtj 

Similarly, for the functional @ (u) we can introduce a set Eo C G ;’ V, mes Eo = 
mes (G X V) such that on an arbitrary variant uc (X. u) defined by the finite sets 

(4.3) with (Xi, ui) c EQ, the first variation 6@ has the form 

&Jr = 2 rik 1’~” (Xi, vi) A,,g (Xi, vi, uik, u” (Xi, vi)) $- (4.5) 
i, h- 

5. Using the formulas (4.4) and (4.5) we now obtain the necessary conditions of 

optimality in the form of a minimum principle. To each set of parameters (4.3) with 

(Xi, vi) E E = EL r) Eo there corresponds, in accordance with (4.4) and (4.5)) a 

definite pair of variations 8L and a@ which can be considered as a vector belonging 
to the space E,. The whole collection of such sets has a corresponding set K of vec- 

tors {6L, &D}. I nvestigation of the structure of the set K C L, shows that K is a 

wnvex cone in E, with its apex at the coordinate origin and, that the cone does not 

intersect the open negative quadrant K = (xi, z,; xi < 0, x.2 < 0). From this it 
follows that the convex nonintersecting cones K and R , diverge in E, on a certain 

straight line defined by the vector of the normal p z~z {pt, pLz} E E, directed to- 
wards the cone K, and the scalar product of p and any vector belonging to K is non- 
negative 

p16L + pgm > 0 (5.1) 

The above relation together with (4.4) and (4.5) makes it possible to obtain the neces- 
sary conditions of optimality in the form of a minimum principle. To do this, we must 
construct a specific set of parameters 

Evaluating the corresponding set of variations and using (5. l), we obtain the necessary 

condition of optimality in the form of the following minimum principle. 
The minimum principle. If u0 (X, v) is the optimal control and ‘I!, (.x, 

U, t) the corresponding L,- solution of the problem (1. l), then there exist functions 
x0 (x, LI) and Y,, (X, c) belonging to L, (G j< V) and defined uniquely by the ope- 
rator relations 

x0 (X, I’) ~= B*t”, vg (X, v> = BT*po (5.2) 

and nonnegative numbers pl, p2 (p12 + pz2 # 0) such that the relation 

A (X, l’, t, ZLO (X, v)) = 

pi (x0(X, U) g (X, V, UO) _1- 5 L (X, v, t, u”, ‘I”0 (X, 2’2 0) tEt} t 

(5.3) 

0 
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p2 (2’0 (AT, u) g (X, u, UO) + a> (X, u, u*, YYO (X, u, T))) = 
t:fn A (X, 72, t, u (X, t)) 

holds almost everywhere in G x 1’. 

We note that the functions vO (X, v) and x0 (X, ?.J) defined in (5.2) represent the 
solutions of certain conjugate problems, Let qr (X. u, t) be a solution of the follow- 
ing mixed problem: 

A”rp, =_ - + ‘p3 (X7 2’? t) - (u, V,) cpl (X, u, t> + (5.4) 

Iq&K u, 0% - x IulW,(X, u, t)Yf(X, @Kf(X, v, v’)-t s 
IV 

345 ho) Z, (X, z:, t) K, (X, 27, c’)) (pl (X, z-‘, t) dv’ ~1 T 

‘PI (X, u, t) 1 f=T-0 = 0 

91(X, u, 4JXES = 0, (n(X>*d > 0 

Then we can easily see that x0 (X, LY) -= 'p1 (X, L', 0). 
Similarly, if ‘pa (X, rj, t) is a solution of the mixed problem 

A*Cp, (X, 2‘, t) = 0, 9.2 (X, u, t) /l=?‘-. = 9 
(5*5) 

cp, (X, C, QXES = 0, (n (X)*u) > 0 
then 

Furthermore we note that x0 (X, L*) and vg (X, 22) can also be written in the form 

xo (x, c) =; 5 ” (l)o;; I’* ‘4) G, (0, X, u 1 t, Y, zu)dl? 

1) 

’ Yo(X, LT) = s au,(““(fl ‘, “)) G,(O, X, uIT, Y, w)dYdzo 
3 

cx\- 

Here G, (s, Y1 w 1 t, X, u) is the Green’s function of the mixed problem which cor- 
responds to the optimal control u” (X, v) and defined as follows: 

AGO (s, l,‘, w 1 t, X, L)) = 0 (in the variables t, X, 1.) 

A*G, (s, I’, UP 1 t, X, u) = 0 (in the variables s, Y, ~3) 

where G, (s, Y, WI t, .A’, U) -+ 6 (Y - X) 6 (w - c) when ft - s) 1 u (it is 
assumed that XI (X, L’, t), 2, (X, v, t) and I? (X, u, t) all vanish identically out- 
side G). 

6. We deal in the same manner with the problem of controlling a transport process 
in the case when the control vector function u (X, U, t) enters the coefficient of ab- 
sorption z1 (X, u, t, U) and the source q (X, L’, t, u). but is not contained in the 
boundary condition of the problem (1.1) (problem A). 

Let us pose for the problem A the following optimal problem: to find among the 
admissible controls u (X, u, t) (i.e. u (X, u, t), (X, u, t) E LJ is a vector control 
function, measurable and bounded within the stated region and assuming the values from 
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the bounded set $2 c E,), satisfying the restriction 

the control which minimizes the functional 

J(u) =s F(X, Z’, t, u (X, u, q, $11 (X, I?, t)) dZ, 
I., 

let N (X, U, t, u, Z) and F (X, C, t, U, Z> satisfy the same conditions as L (x, 

Y, t, u, z)(seeSect, 1). Let the conditions (X,4) also hold and let 

0 < I L’ 1 I: (X, c, t, u f/Y, L’, t)) G c, 

1 q (X, t‘, 2, u (X, t’, t)) I *< B (X, [‘, i) E L, (@I 

for any admissible control U. (X, IT, t). Finally, let E and (7 be continuous in U. 

Then we have the following minimum principle. 
The minimum principle, If u*(X, L+, t) is the optimal control and 9,(X, 

L’, 1) the corresponding L,- solution of the problem A, then there exist functions 
csO (X, u, t) and f3, (X, L‘, t) belonging co L, (L)) and defined uniquely by the 

operator relations 
a, (X, I:, t} = (i4,-1) * z*, PO (X, L’, r) := (A 0-l) * PO 

and nonnegative numbers p1 and f~s (pi* +- ~~2 + 0) such that the relation 

holds almost everywhere in ,!J . ln the above expression z. and pO are functionals uni- 

quely defined by the functionals 1 and N and by the optimal pair V!‘*, u”. 
r..et G, (s, Y, w I C, X, c) denote the Green’s function corres~nding to the opti- 

mal control u* (X, u, t), Then 

T 

T 

We note, in addition, that czo (X, L’, t) and PO (X, L‘. t) are solutions of the conju- 
gate problems analogous to (5.5) and (5.4). 

Merhods similar to those given in f.5, 61 can be used to compute the Green’s function, 
and an analogous minimum principle can be considered for the stat~ona~ problems of 
the transport theory. 

7 a The mi~mum principles obtained in Sect. 5 and 6 reduce the problem of deter- 
mining optimal controls to finding the minima of the corresponding functionals and to 
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solving the transport equation by approximate methods. Methods described in p - 111 

can be used to solve the numerical problems. 
As an example, we consider the following problem connected with the transport equa- 

tion 

~ul,,k Y. t) 

1 

tP~~,(W)+ 4&- !, $,(:,p’,t)dp’ (7.1) 

-1 

Let the function x (i, P) E L, {(O, (1) x (-- 1, I)} be specified. We seek such an admis- 
sible control IL (5, 11) that the generalized L,- solution of the problem (7.1) minimizes 
the functional tt’i 

@ (u) = \ \ I ‘I:, (z, It* 7) - x (3 t PI 1% d,-dp 
-10 

Using formula (5.3) we write the necessary conditions of optimality of the control in 
the form of the following minimum principle : 

vo (.% p) u” t-v PI + @ (2, P, 7.6” (z, IL), 4% C--Y P> Tll = 
inf {v. k, IL) II + @ (2, p, u, *O (5, th U)l 

lid2 

Thus, it is necessary to find a control II (5, 1~) minimizing the functional 

I (24) = Tg (J, lL) u (z, n) + @ (u, yu (z- PY T)! 

Here y. (z, n) is the solution of a certain conjugate problem analogous to (5.5). Namely, 

if 9% (3, $1, ‘) represents a generalized L,-solution of the problem 

89, (-*, E-l. f) acp, (21 E”* f) ,: t’ 
_- 

dt - p a2 +G(P,‘=% I (PCL(3,P’, 9dP’ (7.2) 

-1 

then 

We note that in the above example the control function IL (3, p) is not, generally 
speaking, restricted in any way and ~1) (IL) does not depend explicitly on the control 

IL (3, 1’). For this reason the functional I ((0 is a linear function of the control EL (3, 11) 
and attains a minimum only for :si) (J. 11) = 0 or in other words, cfO (a, t1, 0) = 0. The 
latter together with (7.2) yield the relation ~1” (I, u, 2’) --- 2 (;, p). This in fact deter- , 
mines the optimal control 11:’ (s, 11) I which can be any control with the property that 
the corresponding solution satisfies the condition qlL (z, IL, T) = x (z, 1~) at the instant 
t = 1’. 

The figures illustrate the controls corresponding to various standard values of x (z, ~1) 
and the solutions of (7.1) at the instant t = T obtained according to the controls com- 
puted, and this fully agrees with the arguments presented above. Figures 1 - 3 correspond 
to 
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Fig. 1 

Fig. 2 

Fig. 3 
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1 co-3 & (:: - 0.09) 2 E [0.09,O.l], P<O 
X3(u*, p) = 

1, s E [O.Oi, 0.11, 
P>O 

I x 
sin -7 0.02 ” : E 10, o.nl], P>O 

The transport equation was solved by an apptoximate method given in [ 1 O] and the 

functional was minimized using the method of coordinate descent [lZ). 
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